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People have an amazing knack 
for image recognition. We 
can riffle through a stack of 
pictures and almost instantly 

label each one: dog, birthday cake, bi-
cycle, teapot. What we can’t do is ex-
plain how we perform this feat. When 
you see a rose, certain neurons in your 
brain’s visual cortex light up with ac-
tivity; a tulip stimulates a different set 
of cells. What distinguishing features 
of the two flowers determine this re-
sponse? Experiments that might an-
swer such questions are hard to carry 
out in the living brain.

What about studying image recog-
nition in an artificial brain? Comput-
ers have lately become quite good at 
classifying images—so good that ex-
pert human classifiers have to work 
hard to match their performance. 
Because these computer systems are 
products of human design, it seems 
we should be able to say exactly how 
they work. But no: It turns out com-
putational vision systems are almost 
as inscrutable as biological ones. They 
are “deep neural networks,” mod-
eled on structures in the brain, and 
their expertise is not preprogrammed 
but rather learned from examples. 
What they “know” about images is 
stored in huge tables of numeric co-
efficients, which defy direct human 
 comprehension. 

In the past year or two, however, 
neural nets have begun to yield up a 
few fleeting glimpses of what’s going 
on inside. One set of clues comes from 

images specially designed to fool the 
networks, much as optical illusions fool 
the biological eye and brain. Another 
approach runs the neural network in 
reverse; instead of giving it an image 
as input and asking for a concept as 
output, we specify a concept and the 
network generates a corresponding 
image. A related technique called deep 
dreaming burst on the scene last spring 
following a blog post from Google Re-
search. Deep dreaming transforms and 
embellishes an image with motifs the 
network has learned to recognize. A 
mountaintop becomes a bird’s beak, a 
button morphs into an eye, landscapes 
teem with turtle-dogs, fish-lizards, and 
other chimeric creatures. These fanciful, 
grotesque images have become an In-
ternet sensation, but they can also serve 
as a mirror on the computational mind, 
however weirdly distorted.

Learning to See
The neurons of an artificial neural 
network are simple signal-processing 
units. Thousands or millions of them 
are arranged in layers, with signals 
flowing from one layer to the next.

A neural network for classifying 
images has an input layer at the bot-
tom with one neuron for each pixel (or 
three neurons per pixel for color im-
ages.) At the top of the stack is a layer 
with one output neuron for each pos-
sible category of image. Between the 
input and output layers are “hidden” 
layers, where features that distinguish 
one class from another are somehow 
extracted and stored.

A newly constructed neural network 
is a blank slate; before it can recognize 
anything, it must be trained. An image 
is presented to the input layer, and the 

network proposes a label. If the choice 
is incorrect, an error signal propagates 
backward through the layers, reducing 
the activation of the wrongly chosen 
output neuron. The training process 
does not alter the wiring diagram of 
the network or the internal operations 
of the individual neurons. Instead, it 
adjusts the weight, or strength, of the 
connections between one neuron and 
the next. The discovery of an efficient 
“backpropagation” algorithm, which 
quickly identifies the weights that most 
need adjusting, was the key to making 
neural networks a practical tool.

Early neural networks had just one 
hidden layer, because deeper networks 
were too difficult to train. In the past 
10 years this problem has been over-
come by a combination of algorithmic 
innovation, faster hardware, and larger 
training sets. Networks with more than 
a dozen layers are now commonplace.

Some networks are fully connected: 
Every neuron in a layer receives input 
from every neuron in the layer below. 
The new image-recognition networks 
are built on a different plan. In most of 
the layers each neuron receives inputs 
from only a small region of the layer 
below—perhaps a 3×3 or 5×5 square. 
All of these patches share the same 
set of weights, and so they detect the 
same motifs, regardless of position in 
the image plane. The result of apply-
ing such position-independent filters 
is known as convolution, and image-
processing systems built in this way 
are called convolutional neural networks, 
or convnets.

The convnet architecture creates a 
natural hierarchy of image structures. 
In the lower layers of the network each 
neuron sees a neighborhood of only a 
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few pixels, but as information propa-
gates upward it diffuses over wider 
areas. Thus small-scale features (eyes, 
nose, mouth) later become elements of 
a coherent whole (a face). 

An annual contest called the Image-
Net Large Scale Visual Recognition 
Challenge has become a benchmark 
for progress in computer vision. Con-
testants are given a training set of 1.2 
million images sorted into 1,000 cat-
egories. Then the trained programs 
must classify another 100,000 images, 
trying to match the labels suggested by 
human viewers. Some of the categories 
are fairly broad (restaurant, barn), oth-
ers much more specific (Welsh spring-
er spaniel, steel arch bridge).

For the past three years the con-
test has been dominated by convnets. 
The 2014 winner was a system called 
GoogLeNet, developed by Christian 
Szegedy of Google and eight col-

leagues. The network is a 22-layer 
convnet with some 60 million param-
eters to be adjusted during training.

Seeing in Reverse
When a convnet learns to recognize a 
Welsh springer spaniel, what exactly 
has it learned? If a person performs the 
same task, we say that he or she has 
acquired a concept, or mental model, of 
what the dog breed looks like. Perhaps 
the same kind of model is encoded in 
the connection weights of GoogLeNet, 
but where should you look for it among 
those 60 million parameters?

One promising trick for sifting 
through the network’s knowledge is to 
reverse the layer-to-layer flow of infor-
mation. Among the groups exploring 
this idea are Andrea Vedaldi and An-
drew Zisserman of the University of 
Oxford and their colleagues. Given a 
specific target neuron in the upper lay-

ers of the network, they ask what in-
put image would maximize the target 
neuron’s level of activation. A varia-
tion of the backpropagation algorithm 
can answer this question, producing 
an image that in some sense embodies 
the network’s vision of a flower or an 
automobile. (You might try the same 
exercise for yourself. When you sum-
mon to mind a category such as mea-
suring cup, what images flash before 
your eyes?)

The reversal process can never be 
complete and unambiguous. Classi-
fication is a many-to-one mapping, 
which means the inverse mapping is 
one-to-many. Each class concept repre-
sents a potentially infinite collection of 
input images. Moreover, the network 
does not retain all of the pixels for any 
of these images, and so it cannot show 
us representative examples. As mem-
bers of the Oxford group write, “the 

The process known as deep dreaming transforms a photograph of pe-
culiar landforms—conical sandstone “hoodoos” in northern New 
Mexico—into a far stranger collage of animal forms, faces, architectural 
fantasies and abstract patterns. The algorithm probes the content of an 
artificial neural network, accentuating various motifs that the network 

has learned to “look for” in images. Many of the embellishments seem 
to arise from local features of the image. A dark patch becomes a dog’s 
eye or nose, and the rest of the animal grows from that nucleus. But 
there are also intriguing global transformations. Note how parts of the 
steep terrain have become a gently sloping plane seen in perspective.
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network captures just a sketch of the 
objects.” All we can hope to recover 
is a murky and incomplete collage of 
features that the convnet found to be 
useful in classification. The dalmatian 
image has black and white spots, and 
the lemon image includes globular yel-
low objects, but many other details are 
missing or indecipherable.

Learning from Failure
Quite a lot of what’s known about hu-
man cognitive abilities comes from 
studies of mental malfunctions, in-
cluding the effects of injury and dis-
ease as well as more mundane events 
such as verbal errors and misinter-
preted images. Two intriguing recent 
results apply this idea to image recog-
nition in convnets.

A group led by Szegedy (the de-
veloper of GoogLeNet) harnessed an 
optimization algorithm to find “ad-
versarial” images, specially crafted 
to fool a convnet classifier. Start with 
an image that the network correctly 
recognizes as a school bus, change a 
few pixels—changes so slight they are 
imperceptible to the human eye—and 
the network now assigns the image to 
another class.

Ahn Nguyen of the University of 
Wyoming, with Jason Yosinski and Jeff 
Clune, has performed a complementa-
ry experiment. They generated images 
that look to the human observer like 
pure noise, yet the network recognizes 
them with high confidence as a chee-
tah or a centipede.

These findings raise questions about 
the reliability and robustness of neural 
network methods, but those concerns 
should not be overblown. It is not the 
case that any small random change 
to an image is likely to mislead the 
classifier. As a matter of fact, convnets 
perform well even with heavy doses of 
random noise. The adversarial exam-
ples are so rare they will almost never 
be encountered by chance, yet their 
existence indicates that the network’s 
training leaves “wormholes” where 
two distant regions of the image space 
are brought together.

“We Need to Go Deeper”
In June of this year an article posted 
on the Google Research Blog suddenly 
brought the mysteries of deep neural 
networks to the attention of a much 
wider audience. The post was accom-
panied by a gallery of outlandish but 
strangely engaging images that attract-

ed interest not just from the computer 
vision community but also from art-
ists, cognitive scientists, and the press 
and public. This new genre of graphic 
works was given the name inceptionism, 
alluding to a line in the science fiction 
film Inception: “We need to go deeper.” 
A follow-up blog post introduced the 
term deep dream, which has caught on.

The algorithm behind the deep 
dream images was devised by Alex-
ander Mordvintsev, a Google soft-
ware engineer in Zurich. In the blog 
posts he was joined by two coauthors: 
Mike Tyka, a biochemist, artist, and 
Google software engineer in Seattle; 
and Christopher Olah of Toronto, a 
software engineering intern at Google. 

Here’s a recipe for deep dreaming. 
Start by choosing a source image and a 
target layer within the neural network. 
Present the image to the network’s in-
put layer, and allow the recognition 
process to proceed normally until it 
reaches the target layer. Then, start-
ing at the target layer, apply the back-
propagation algorithm that corrects 
errors during the training process. 
However, instead of adjusting connec-
tion weights to improve the accuracy 
of the network’s response, adjust the 
source image to increase the amplitude 
of the response in the target layer. This 
forward-backward cycle is then repeat-
ed a number of times, and at intervals 
the image is resampled to increase the 
number of pixels.

As the iterations continue, ghostly 
patterns emerge from the image, faint-
ly at first and then more distinctly. A 
dark smudge becomes a dog’s nose, a 
wrinkled bit of cloth turns into a spi-
der web, lighthouses and windmills 
sprout from the empty blue sky. The 
process is self-reinforcing. A neural 
network has within it a huge jumble of 
image elements drawn from the train-
ing set, many of which can be matched 
to random fragments of the source im-
age. The network acts a bit like Hamlet 
feigning madness, when he looks at 
a cloud and sees first a camel, then a 
weasel, then a whale.

In an e-mail exchange I asked Mord-
vintsev, Tyka, and Olah how they 
came to invent their technique. I was 
surprised to learn that the original goal 
was solving a routine graphics prob-
lem: preventing loss of detail when 
enlarging an image. “We expected that 
maximizing the magnitude of current 
internal activations of the [convnet] 
on random patches of a slightly blurry 

Painterly effects decorate another landscape 
photograph given the deep-dreaming treat-
ment. Abstract patterns that resemble con-
tour lines, shaded relief maps, embossing, 
and brushstrokes are prominent in the earliest 
layers of the neural network (although more 
pictorial animal forms begin to emerge in the 
two bottom panels). Some of the patterns are 
similar to motifs found in the mammalian 
visual cortex; some have been likened to hal-
lucinations induced by psychoactive drugs.
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image would add some of the missing 
details. Turned out it did.”

A few weeks after their first blog 
post, Mordvintsev, Tyka, and Olah 
published their deep dream program, 
making it free for anyone to download 
and run. Others immediately began 
experimenting with the algorithms, 
and several websites now offer deep 
dreaming as a service. One company 
has packaged the code with a point-
and-click interface for $15 (but it’s not 
as versatile as the original).

The deep dream program itself is 
only about 100 lines of code, writ-
ten in the Python programming lan-
guage, but it relies on several other 
large frameworks and libraries, includ-
ing a few that must be compiled from 
source code. If all goes well, install-
ing the software takes a few hours. It 
did not go well for me on my first try, 
or my second. I finally succeeded by 
starting fresh with a blank disk drive.

Dream and Hallucination
“Dreaming,” in my view, is not quite 
the right metaphor for this process. 
Dreams are what the mind conjures 
when the perceptual apparatus is shut 
down; here the visual system is hy-
peractive, and what it generates are 
hallucinations. In these images we wit-
ness a neural network struggling to 
make sense of the world. The training 
process has implanted expectations 
about how pieces of reality should fit 
together, and the network fills in the 
blanks accordingly. Photographs and 
other “natural” images—all those that 
might conceivably represent a three-
dimensional scene on planet Earth—
form a minute subset of all possible 
arrays of colored pixels. The network 
can only construct images consistent 
with this very special sample.

Many aspects of the images suggest 
a focus on purely local transforma-
tions. Faces, whether human or ani-
mal, generally have the proper com-
plement of eyes, nose, and mouth, but 
the face may well be mounted on the 
wrong kind of body. Also, neural net-
works apparently can’t count. Dogs 
are not limited to just four legs, or just 
one head. Yet there are also some glob-
al constraints that seem to be enforced 
throughout the image frame. However 
many legs an animal has, they all reach 
the ground. Objects of all kinds stand 
upright and rest upon a surface. The 
system can even create such a surface 
if necessary, turning a vertical wall into 

a “ground plane” seen in perspective. 
In some cases there’s a rough sense of 
scale consistent with the perspective 
view: Big dog down front, tiny build-
ing on the horizon.

The most flamboyant dream images 
come from layers near the middle of 
the convnet stack, but the results from 
lower layers are also interesting, both 
aesthetically and for what they reveal 
about perceptual mechanisms. In the 
mammalian visual cortex some of the 
earliest stages of processing detect 
edges in various orientations, gradi-
ents, and other simple high-contrast 
forms such as center-surround pat-
terns. It’s fascinating to see that similar 
motifs turn up in the early layers of 
a convolutional neural network. And 
they were not put there by the pro-
grammer; they emerged from the net-
work’s own geometric analysis of the 
training set.

One could dismiss the deep dream 
technique as an overengineered con-
trivance for making funny-looking 
pictures, like an Instagram filter run 
amok. And indeed the fad may fade 
away as quickly as it came. So far, the 
methodology is documented only in 
source code and blog posts; if there is 
more scholarly work under way, it has 
not yet been published. Will anything 
of substance ever come out of this line 
of inquiry?

I don’t know, but I have some ques-
tions I would like to see answered. In 
particular, why are certain kinds of 
content so heavily overrepresented 
in the dream images? The abundance 
of canines may reflect biases in the 
ImageNet database (120 of the 1,000 
categories are dog breeds). Birds, spi-
ders, ornate buildings, lanterns, and 
gazebos are also frequent, and eyes are 
everywhere. But where are the cats? 
All of these images were downloaded 
from the Web, which is supposed to be 
full of cats!

I would also like to know which 
geometric elements in the substrate 
image are most likely to be embel-
lished. I thought I might approach this 
question by looking at the program’s 
action on simple textures, such as a 
photograph of beach pebbles. It turns 
out that such planar patterns don’t 
evoke much; the network seems to 
need 3D structure to stimulate the cre-
ative urge.

The freaky menagerie of deep 
dream images is both entertaining and 
distracting. I think it important to keep 

in mind that the underlying technolo-
gy was designed not to generate these 
weird images but to recognize and 
classify ordinary ones. Furthermore, 
the program does that job quite well. 
The two-headed dogs and the sky spi-
ders are evidently part of that process. 
The task now is to understand why.
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A note to my readers
It has been my privilege to write the Comput-
ing Science column since 1993. This is my 
125th column, and it will be my last.

I thank my patient editors. I thank the 
many scientists and mathematicians who 
have generously shared their work, and 
guided mine. And I thank the readers of 
American Scientist—by far the most thought-
ful and responsive audience I have ever had.

To answer some questions that often go 
unspoken: I have not been fired, and I am 
not retiring. On my agenda is learning more 
math, doing more computing, and writing 
all about it. If you would like to follow my 
further adventures, please stay tuned to 
http://bit-player.org.


