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Hip-Hop Physics

Brian Hayes

Mathematical models and 
computer simulations usu-

ally begin as aids to understanding, 
introduced when some aspect of natu-
ral science proves too knotty for direct 
analysis. Facing an intractable prob-
lem, we strip away all the messy de-
tails of the real world and build a toy 
universe, one simple enough that we 
can hope to master it. Often, though, 
even the dumbed-down model defies 
exact solution or accurate computa-
tion. Then the model itself becomes an 
object of scientific inquiry—a puzzle to 
be solved.

A good example is the Ising model 
in solid-state physics, which attempts 
to explain the nature of magnetism in 
materials such as iron. (I wrote about 
the Ising model in an earlier Comput-
ing Science column; see “The World in 
a Spin,” September–October 2000.) The 
Ising model glosses over all the intrica-
cies of atomic structure, representing 
a magnet as a simple array of electron 
“spins” on a plain, gridlike lattice. 
Even in this abstract form, however, 
the model presents serious challeng-
es. Only a two-dimensional version 
has been solved exactly; for the three- 
dimensional model, getting accurate re-
sults requires both algorithmic sophisti-
cation and major computer power.

One step up from the Ising model—
in terms of realism and complexity—is 
something called the Hubbard model. 
Again the aim is to describe aspects of 
solid-state physics, including various 
kinds of magnetism as well as certain 
conductive and insulating materials, 
and maybe even the high-temperature 
superconductors that have stumped 
theorists since the 1980s. As in the 
Ising model, the Hubbard model puts 

electrons on a simple lattice, but in this 
case the electrons are allowed to hop 
from site to site. The model also insists 
on a quantum-mechanical treatment 
of the interactions between electrons. 
These two features make the Hubbard 
model a much harder nut to crack.

Except in the special case of a one-di-
mensional lattice, the Hubbard model 
has defied exact mathematical analysis. 
And computer simulations of Hubbard 
systems become painfully slow with 
any more than a few dozen electrons. 
Calculations are so difficult that no one 
knows for sure whether various Hub-
bard systems are conductive or insulat-
ing, or what their magnetic properties 
might be. This situation has led to an 
extraordinary new strategy for solv-
ing the model: putting it to the test of 
experiment. Several groups of physi-
cists have built macroscopic replicas of 
the Hubbard lattice out of light waves 
and trapped atoms. Thus we come full 
circle, creating a physical analog of an 
abstract model that in turn represents 
another physical system.

Magnetic Attractions
At the most superficial level, the an-
tics of electrons in solids seem easy 
enough to comprehend. A substance is 
conductive if at least some of its elec-
trons are free to wander about; when 
every electron is tightly bound to an 
atom, the material is an insulator. Mag-
netic effects derive from the spin of 
the electron, which gives rise to a tiny 

magnetic dipole moment, like that of 
a bar magnet. The strongest form of 
magnetism (ferromagnetism) appears 
when nearly all the spins line up in the 
same direction.

Going beyond this level of under-
standing is not so easy. What prop-
erty of a solid determines whether 
electrons are nomadic or frozen in 
place? Why do electron spins in iron 
and nickel adopt a parallel alignment 
whereas those of zinc and copper re-
main randomly oriented? A useful 
theory should also make quantitative 
predictions. For example, how does 
conductivity or magnetization vary as 
a function of temperature?

This last question brings us back to 
the Ising model, which was devised 
to explore the thermal properties of 
ferromagnets. If you heat a magnet to 
high temperature, the magnetization 
fades away. Then, when you allow 
the material to cool again, it regains 
its magnetic properties at a specific 
temperature called the Curie point 
(1,040 kelvins for iron). The transition 
is abrupt: A graph of magnetization 
as a function of temperature shows a 
discontinuity—a sharp kink—at the 
Curie point. Evidently there is a sud-
den transition from thermal chaos to 
magnetic order.

 The Ising model was designed to 
capture the essential features of this be-
havior. The model was invented by the 
German physicist Wilhelm Lenz and 
investigated by his student Ernst Ising 
in the 1920s, at a time when the quan-
tum theory of solids was still in its in-
fancy. They represented the spin of an 
electron by a simple arrow constrained 
to point either up or down. Interactions 
of the spins were codified in two rules. 
First, pairs of adjacent spins prefer to 
point the same way, either both up or 
both down; there is an energy penalty 
whenever nearest-neighbor spins are 
antiparallel. Second, thermal fluctua-
tions tend to mix up the spins, flipping 
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them at random; thus orderly align-
ments are disrupted when the temper-
ature rises.

Ising hoped to observe a sudden 
onset of magnetization, as in real fer-
romagnets. He analyzed a one-dimen-
sional version of the model, in which 
the lattice is merely a line or a ring. Dis-
appointingly, he found no discontinu-
ous transition to a magnetized state at 
any temperature above absolute zero. 

Ising believed that this negative re-
sult would carry over to higher dimen-
sions as well, but a decade later other 
physicists found hints of magnetiza-
tion in two dimensions. Then in 1944 
Lars Onsager confirmed these results 
with an exact mathematical solution of 
the two-dimensional Ising model; his 
equation showed that magnetization 
in the planar spin system does indeed 
jump discontinuously at a nonzero 
critical temperature. For three dimen-
sions no exact solution has ever been 
found, but computer simulations give 
unmistakable evidence of an abrupt 
phase transition.

The Ising model has gone on to be-
come a kind of model for models. The 
same abstract structure—a lattice of 
sites, nearest-neighbor interactions, a 
variable at each site that takes on two 
discrete values—has served to describe 
not only magnets but also dozens of 
other physical systems, such as alloys 
(where the up and down spins repre-
sent atoms of two different elements) 
and gases (where the two states in-

dicate the presence or absence of an 
atom). Ising-like models have even 
made their way into the social sciences, 
where they describe phenomena such 
as the emergence of racial segregation 
in housing patterns. 

Meanwhile, despite all these di-
verse successes, the Ising model has 
not proved entirely satisfactory for its 
original purpose—as a tool for un-
derstanding ferromagnetism. In this 
application the model has two major 
weaknesses. First, spins in the Ising 
model are rigidly pinned to the lat-
tice sites, but it turns out that some 
degree of electron mobility is crucial to 
many magnetic phenomena. Second, 
although the Ising model was inspired 
by quantum-mechanical ideas, it incor-
porates none of the peculiar rules and 
regulations that the quantum theory 
imposes on electrons. The Hubbard 
model addresses both of these issues.

The Crowded Dance Floor
The stage setting for the Hubbard mod-
el is the same as that of the Ising model: 
a simple lattice with cubic symmetry—
a cartoon of a crystalline solid. But the 
Hubbard dancers are more acrobatic. 
As noted above, Hubbard electrons can 
jump from one lattice site to another. 
(The range of motion is usually limited 
to nearest-neighbor sites.) The electrons 
also interact with one another, experi-
encing mutual repulsion whenever two 
electrons land on the same site. Finally, 
the choreography of Hubbard electrons 

is subject to a special rule, the Pauli ex-
clusion principle, a definitive element 
of quantum mechanics.

Think of the Pauli principle (named 
for the Austrian physicist Wolfgang 
Pauli) as a generalization of the com-
monsense notion that two objects can-
not be in the same place at the same 
time. The quantum version says that 
no two particles can occupy exactly the 
same quantum state. If two electrons 
have the same energy, for example, 
they must differ in angular momen-
tum or some other property. On the 
Hubbard lattice, the exclusion prin-
ciple implies that if two electrons occu-
py the same site, they must have oppo-
site spins. An obvious corollary is that 
no site can ever accommodate more 
than two electrons, since at least two of 
them would have the same spin.

With these facts in hand, we can get 
a rough vision of the Hubbard model 
in action. Suppose the lattice is two-
dimensional, like a sheet of graph 
paper. Some of the lattice points are 
occupied by electrons; some of those 
electrons are spin-up and the rest are 
spin-down. Thus a site can have any 
of four occupation states: no electrons, 
one up electron, one down electron or 
a pair of electrons with opposite spins. 
An electron can hop to any neighbor-
ing site, provided the move is allowed 
by the exclusion principle.

There’s one more essential element to 
introduce: the energy of the electrons. 
The exclusion principle requires that 

Ising model Hubbard model

Square-dancing electrons are the subject matter of two venerable models in solid-state physics. The Ising model (left) gives a simple account 
of ferromagnetism—the kind of magnetism that holds the grocery list to the refrigerator door. Electron spins on a square lattice are represented 
as arrows that point either up or down; on the lattice shown here one region has ferromagnetic order, with all spins pointing the same way, but 
another area is antiferromagnetic, with nearest-neighbor spins antiparallel. The Hubbard model (right) also puts electrons on a lattice, but the 
electrons are allowed to hop from one site to another, and pairs of electrons with opposite spin can share a single site. The Hubbard model can 
help explain both magnetism and electrical conductivity, but working out the predictions of the model itself is a daunting challenge.
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electrons with the same spin have dis-
tinct energies, which means there must 
be a ladder of available energy levels. 
If all the electrons have the same spin, 
they will necessarily fill all the rungs of 
the ladder from bottom to top. Howev-
er, if half the electrons are spin-up and 
half are spin-down, they can be packed 
two to a rung, lowering the average en-
ergy level. This sharing of levels means 
that configurations with mixed spins 
can be energetically favorable.

On the other hand, the presence of 
both up and down spins also allows 
pairs of electrons to occupy the same 
lattice site, which incurs an energy 
penalty because of their mutual repul-
sion. For each doubly occupied site, the 
overall energy of the system increas-
es by an amount designated U. Thus 
there is a subtle competition between 
the cost of populating higher levels of 
the energy ladder and the cost of over-
coming electromagnetic repulsion.

What happens when we push the 
Start button and let the electrons hop 
around on the lattice? In general, this 

is a very hard question, but a few “cor-
ner cases”—where some parameter is 
set to an extreme value—offer clues. 
One such parameter is the number of 
electrons. For a lattice of N sites, this 
number must lie between zero and 2N. 
Nothing much happens with zero elec-
trons, of course, and it turns out the 
same is true with 2N electrons: All sites 
are filled with paired electrons, and 
none of the electrons can move.

Another parameter is U, the energy 
of electrostatic repulsion for electrons 
at the same lattice site. If U is zero (no 
repulsion at all), the spin-up and the 
spin-down electrons form two inde-
pendent populations, each of which 
drifts through the lattice oblivious 
of the other’s existence. At the op-
posite extreme, if U is infinite, the re-
pulsion is so great that no site ever 
holds more than one electron. In this 
circumstance electrons can move only 
when there is an adjacent vacant site; 
if the lattice is half full (N electrons, 
with no vacancies), the configuration 
is frozen solid.

Still another parameter, whose role 
I have neglected so far, is temperature. 
At a temperature of absolute zero, the 
Hubbard model is compelled to adopt 
the configuration of lowest possible 
energy—the ground state. Thermal ag-
itation at higher temperatures allows 
the system to escape this fate. With 
warming, higher-energy states come 
within reach. At infinite temperature 
all possible configurations are equally 
likely, and energy differences between 
states cease to have any influence on 
the behavior of the system.

As a practical matter, interest focuses 
not on the extreme cases but on realis-
tic values of the parameters. Physicists 
would most like to know what hap-
pens when the number of electrons 
is at or near half-filling (one electron 
per site) and when the repulsion pa-
rameter U is greater than zero but far 
from infinite. As for temperature, it is 
important to identify the ground state, 
but we would also like to know how 
the behavior of the system changes as 
it warms up from absolute zero. 

An Electronic Mosh Pit
The Hubbard model was invented in 
the early 1960s by John Hubbard, a 
British physicist who died young in 
1980. Martin Gutzwiller of IBM Re-
search in Zurich devised a similar 
model at about the same time, and in-
vestigators in Japan were also thinking 
along the same lines.

There were two main motivations for 
the model—two phenomena in need of 
theoretical explanation. One aim was 
to understand the mechanism of fer-
romagnetism. There had certainly been 
progress in this direction since the time 
of Lenz and Ising; in particular, a mod-
el developed in the 1930s by Werner 
Heisenberg adopted the simple lattice 
of the Ising model but gave a more re-
alistic quantum-mechanical account of 
how adjacent spins interact. Still, the 
Heisenberg model left the spins station-
ary on the lattice, whereas the electrons 
that give rise to ferromagnetism in ele-
ments such as iron and nickel are not 
strictly localized; they can migrate from 
atom to atom. The Hubbard model al-
lowed for such motion.

The second question addressed by 
the Hubbard model concerned electri-
cal conductivity—or the lack of it—in 
certain crystalline compounds such as 
copper oxide (CuO). In most insula-
tors, all the electrons are tightly bound 
to atoms or molecules, leaving no mo-

A combinatorial explosion of spin configurations is one reason the Hubbard model has 
proved difficult to solve. Shown here are all possible states of a four-site lattice occupied by 
two up spins and two down spins. Calculating the probability of each such configuration 
involves solving the Schrödinger wave equation of quantum mechanics.
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bile electrons to carry a current. In the 
case of CuO, the theory of solids sug-
gested there should be an ample sup-
ply of conduction electrons, and yet the 
material is an insulator. In 1937 Nevill 
Mott proposed an explanation: CuO 
fails to conduct not for lack of elec-
trons but because the electrons can’t 
get out of each other’s way. The con-
duction band of this substance is like 
a crowded dance floor, where every-
one desperately wants to keep moving 
but there are no vacant spaces to move 
into. By the 1960s the Hubbard model 
offered hope of better understanding 
such Mott insulators.

In recent years, the struggle to un-
derstand new high-temperature super-
conducting materials has intensified 
interest in the Hubbard model. The 
superconductors are layered materi-
als whose components include cop-
per oxides. Philip W. Anderson of 
Princeton University has argued that a 
two-dimensional Hubbard model can 
account for the transition to supercon-
ductivity in the copper oxide layers. 
This view remains controversial; on 
the other hand, the mere possibility 
of solving the puzzle of cuprate su-
perconductivity has led to a frenzy of 
work on the Hubbard model and its 
variations.

The Electron Do-Si-Do
The only exact solution of a Hubbard 
model applies to the one-dimensional 
case, where the electrons move back 
and forth along a line of sites. In 1968 
Elliott H. Lieb, now of Princeton Uni-
versity, and F. Y. Wu of Northeastern 
University studied the behavior of the 
one-dimensional system at half-filling 
(N electrons on N sites) as the value of 
U is varied. At large U (strong repul-
sion), the system is an insulator; Lieb 
and Wu proved there is no transition 
to a conducting state at any U greater 
than zero. They also showed that the 
ground state of the linear model is not 
ferromagnetic but antiferromagnetic: 
The lowest-energy configuration is one 
in which alternate spins point in oppo-
site directions.

Lieb and Wu got their results by ex-
ploiting special properties of one-di-
mensional systems. In particular, there 
is no way for one electron to exchange 
places with another electron except 
by performing a kind of do-si-do, in 
which the two particles simultaneous-
ly occupy the same site. Because of the 
Pauli principle, two electrons in the 

same spin state can never change their 
ordering along the line. These con-
straints, which simplify the analysis, 
do not hold in higher dimensions.

Forty years later, the work of Lieb 
and Wu remains the only rigorous so-
lution to a Hubbard model. But there 
are lots of less-than-rigorous hints and 
clues from approximation methods 
and from computer simulations.

It is widely believed that the two- 
and three-dimensional models also 
have an antiferromagnetic ground 
state—a checkerboard of alternating 
up and down spins—when the lattice 
is half-filled. An informal argument in 
support of this view points out that a 
fully magnetized system has only one 
possible configuration, since none of 
the electrons can move; in the antifer-
romagnet, adjacent electrons with op-
posite spins can swap places through 
the do-si-do mechanism. Thus there 
are many equivalent configurations for 
an antiferromagnet, which lowers the 
overall energy.

Can a Hubbard model ever favor  
ferromagnetism? Yes. In the 1960s Yo-
suke Nagaoka of Kyoto University 
discovered a ferromagnetic phase that 
appears when two conditions are satis-
fied: the repulsive interaction U is very 
strong, and the number of electrons is 
just short of half-filled. A single vacan-
cy (that is, N–1 electrons on N sites) is 
enough to make the difference! Ferro-
magnetism also emerges spontaneously 
in Hubbard-like models in which the 
electrons can hop farther than the near-
est-neighbor sites. One such scheme 
was described in 1995 by Hal Tasaki of 
Gakushuin University in Japan.

What’s intriguing about both fer-
romagnetism and antiferromagnetism 
in Hubbard systems is that the orderly 
configurations arise even though the 
model includes no direct interactions 
between pairs of electrons that would 
tend to align the spins either parallel 
or antiparallel. This is quite different 
from the Ising model, where parallel 
spins benefit from an energy bonus. 
In the Hubbard model—and surely in 
real solids as well—long-range order 
comes from subtler correlations within 
the entire population of electrons.

Why Is Hubbard So Hard?
The long-range correlations that make 
the Hubbard model interesting also 
make it hard to solve. One aspect of 
this difficulty is the vast number of pos-
sible configurations. On a 20-site lattice, 

10 spin-up electrons and 10 spin-down 
electrons can be arranged in more than 
34 billion ways. Yet this combinatorial 
explosion is not the main impediment 
to working out the fate of a Hubbard 
system. Other models in statistical 
mechanics also have huge numbers of 
configurations, yet various methods of 
analysis or simulation yield accurate 
results in those cases.

The real source of difficulty in the 
Hubbard model is the quantum entan-
glement of all the electrons. In the Ising 
model we can flip a spin at one site and 
consider only the local consequences—
the change in energy between that spin 
and its immediate neighbors. In the 
quantum treatment of the Hubbard 
model, shifting an electron from one 
site to another can alter the state of 
the system arbitrarily far away. (The 
quantum state is defined by a wave 
function that can be smeared out over 
the entire lattice.)

Following the evolution of the Hub-
bard system by means of exact compu-
tations is all but unthinkable except for 
the tiniest models. It involves working 
with a matrix of size M × M, where M 
is the number of possible configura-
tions. Michael Creutz of Brookhaven 
National Laboratory has experimented 
with a few such computations, reduc-
ing the storage requirement by tricks 
such as encoding lattice configurations 
in the bits of an integer. He was able 
to study a one-dimensional lattice of 
six sites—essentially a benzene mol-
ecule—with a matrix of 400 × 400 ele-
ments. But he points out that a two-di-
mensional lattice of just 16 sites would 
have some 165,636,900 configurations.

The problems of working with these 
large matrices go beyond mere de-
mands for storage space and comput-
ing time. It turns out that the matrix 
is often “ill conditioned”; when the 
algorithm calls for computing a small 
difference between two large numbers, 
all accuracy is lost and the matrix fills 
with useless numerical noise.

But I should not leave the impres-
sion that computation is a lost cause in 
the Hubbard model. On the contrary, 
it has been the main source of insight 
over the past 40 years. No one algo-
rithm has conquered the problem over-
all, but a toolkit of specialized methods 
have tamed many corners of it. For 
example, there are algorithms that per-
form well for values of N near half-
filling, and other methods that work 
best when U is large. One strategy, pio-
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neered by a group headquartered at 
the University of California, Santa Bar-
bara, takes the counterintuitive step of 
replacing a large matrix with an even 
larger one—but the replacement ma-
trix ameliorates the problem of lost nu-
merical accuracy.

Back to the Lab Bench
The newest trick in the long struggle to 
master the Hubbard model is the idea 
of setting up experimental apparatus 
to mimic the model’s lattice and its 
population of electrons. Standing in 
for the electrons in these experiments 
are atoms of an ultracold gas—so cold, 
and therefore so sluggish, that the at-
oms can be trapped by the feeble elec-
tromagnetic field of a beam of light. 
Three such beams crossing at right an-
gles create a sort of three-dimensional 
egg carton, with periodic wells where 
the cold atoms tend to accumulate. 
The atoms chosen for the experiment 
are members of the same quantum-
mechanical class as electrons (known 
as fermions), and so they are subject to 
the same quantum rules as the elec-
trons in a solid; in particular, no two 
atoms in the same spin state can oc-
cupy the same site in the optical lattice. 
Furthermore, two atoms of differing 
spin that land on the same site experi-
ence a short-range repulsion, just as 
electrons do. Thus the stage is set for a 
full simulation of the Hubbard model. 
The optical lattice is typically a few 
millimeters across, and it holds tens of 
thousands of atoms.

Of course it’s easy to talk about 
the principles of such an experiment; 

making it happen in the laboratory is 
harder—indeed, heroic. But in recent 
months three groups have reported 
successful results of such experiments. 
Two of those groups have found evi-
dence of a Mott-insulator phase in the 
confined atoms. (The groups are led by 
Immanuel Bloch of Johannes Guten-
berg University in Mainz, Germany, 
and by Robert Jördens and Niels Stroh-
maier of the Swiss Federal Institute 
of Technology in Zurich.) The third 
group, led by Gyu-Boong Jo of MIT, 
has seen signs of ferromagnetic order 
in a gas of cold atoms. 

There is something deliciously in-
voluted about this turn of events: an 
experiment that illuminates a model 
that explicates an experiment. One 
interpretation is that the assembly of 
lasers and cryogenic atoms and other 
apparatus is acting as a special-pur-
pose quantum computer, which can 
efficiently solve problems that would 
require exponentially greater effort 
on a classical computer. 

This audacious approach to doing 
science—harnessing physics to do the 
work of mathematics and computa-
tion—surely has great promise; and yet 
I have a nagging reservation. As I said 
at the beginning of this essay, a math-
ematical model is an aid to understand-
ing, not just an engine for producing an-
swers. According to this view, the aim 
of the Hubbard model is not so much 
to determine whether certain kinds of 
solids have ferromagnetic order or Mott 
transitions or superconducting phases. 
What the model offers is hope of un-
derstanding where those traits come 
from—how the basic ingredients of the 
model combine to yield emergent prop-
erties. The cold-atom experiments seem 
less effective as aids to understanding: 
Even when they yield the right answer, 
we may not easily see why it’s right. 
The experiments get their power from 
the same quantum mysteries they seek 
to explain.

The same complaint has often been 
made about ordinary computer simula-
tions and about computer-aided proofs 
in mathematics. If the computer is just a 
black box, and we cannot follow along 
step by step from premise to conclusion, 
how can we pretend to understand the 
result? But these doubts about the legit-
imacy of computer-aided science seem 
to be fading, chased away by the spread 
of algorithmic thinking. Perhaps now 
we need to wait for a wider embrace of 
quantum thinking.
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To my readers

After the publication of this column 
(my 97th since 1993), I will be tak-
ing a one-year sabbatical leave from 
the Computing Science department. 
Although I have a long list of top-
ics for columns that I’m still eager to 
learn about and write about, I also 
have other projects I’ve deferred too 
long. After a year’s respite from bi-
monthly deadlines, I look forward to 
returning to this splendid soapbox in 
2011. In the meantime, this space will 
be filled with fresh voices and view-
points. For those who wish to follow 
my own ongoing adventures, I expect 
to continue posting occasional essays 
at bit-player.org.—Brian Hayes


